Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Asunto principal
Tipo del documento
Intervalo de año
1.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.08.10.503531

RESUMEN

The SARS-CoV-2 virus is the causal agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19). There is an urgent need for potent, specific antiviral compounds against SARS-CoV-2. The 3C-like protease (3CLpro) is an essential enzyme for the replication of SARS-CoV-2 and other coronaviruses, and thus is a target for coronavirus drug discovery. Nearly all inhibitors of coronavirus 3CLpro reported so far are covalent inhibitors. Here, we report the development of specific, non-covalent inhibitors of 3CLpro. The most potent one, WU-04, effectively blocks SARS-CoV-2 replications in human cells with EC 50 values in the 10-nM range. WU-04 also inhibits the 3CLpro of SARS-CoV and MERS-CoV with high potency, indicating that it is a pan-inhibitor of coronavirus 3CLpro. WU-04 showed anti-SARS-CoV-2 activity similar to that of PF-07321332 (Nirmatrelvir) in K18-hACE2 mice when the same dose was administered orally. Thus, WU-04 is a promising drug candidate for coronavirus treatment. One-Sentence Summary A oral non-covalent inhibitor of 3C-like protease effectively inhibits SARS-CoV-2 replication.


Asunto(s)
COVID-19
2.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.07.28.454072

RESUMEN

The 3C-like protease (3CLpro) of SARS-CoV-2 is an attractive drug target for developing antivirals against SARS-CoV-2. A few small molecule inhibitors of 3CLpro are in clinical trials for COVID-19 treatments and more inhibitors are being developed. One limiting factor for 3CLpro inhibitors development is that the cellular activities of such inhibitors have to be evaluated in a Biosafety Level 3 (BSL-3) or BSL-4 laboratory. Here, we design genetically encoded biosensors that can be used in BSL-2 laboratories to set up cell-based assays for 3CLpro inhibitor discovery. The biosensors were constructed by linking a green fluorescent protein (GFP2) to the N-terminus and a Renilla luciferase (RLuc8) to the C-terminus of SARS-CoV-2 3CLpro, with the linkers derived from the cleavage sequences of 3CLpro. After over-expression of the biosensors in HEK293 cells, 3CLpro can be released from GFP2 and RLuc by self-cleavage, resulting in a decrease of the bioluminescence resonance energy transfer (BRET) signal. Using one of these biosensors, pBRET-10, we evaluated the cellular activities of several 3CLpro inhibitors. These inhibitors restored the BRET signal by blocking the proteolysis of pBRET-10, and their relative activities measured using pBRET-10 were consistent with their anti-SARS-CoV-2 activities reported previously. We conclude that the biosensor pBRET-10 is a useful tool for SARS-CoV-2 3CLpro inhibitor discovery. Furthermore, our strategy can be used to design biosensors for other viral proteases that share the same activation mechanism as 3CLpro, such as HIV protease PR and HCV protease NS3.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA